2 research outputs found

    The role of biomass in the renewable energy system

    Get PDF
    Europe is striving for zero carbon electricity production by 2050 in order to avoid dangerous climate change. To meet this target a large variety of options is being explored. Biomass is such an option and should be given serious consideration. In this paper the potential role of biomass in a NW-European electricity mix is analyzed. The situation in NW-Europe is unique since it is a region which is a fore runner in renewable technology promotion but also an area with little sun, almost no potential for hydro and a lot of wind. This will result in a substantial need for non-intermittent low-carbon options such as biomass. The benefits and issues related to biomass are discussed in detail from both an environmental and an economic perspective. The former will focus on the life cycle of a biomass pellet supply chain, from the growth of the trees down to the burning of the pellets on site. The latter will provide detailed insights on the levelized cost of electricity for biomass and the role of biomass as a grid stabilizer in high intermittent scenarios. During the discussion, biomass will be compared to other competing electricity technologies to have a full understanding of its advantages and drawbacks. We find that biomass can play a very important role in the future low carbon electricity mix, the main bottleneck being the supply of large amounts of sustainably produced feedstock

    Cost-benefit analysis of using biochar to improve cereals agriculture

    No full text
    Biochar has received considerable scientific attention in the past decade as a possible method for carbon storage and increasing agricultural yields. Despite this promise, however, economic assessments of biochar are yet to definitively establish the value of the technology, primarily due to discrepancy between observed short-term agronomic benefits and expectations of biochar as a lasting soil improver. This study investigated the economic value of biochar as an agricultural technology for long-term improvement of arable farming. From presently available field trial data, the costs and benefits of using biochar technology to enhance cereals agriculture were evaluated in two generalized geo-economic agricultural scenarios: North-Western Europe (NWE) and Sub-Saharan Africa (SSA). Cost models were developed to estimate the total cost of biochar from initial biomass feedstock acquisition to final soil application for each agricultural setting. Benefits of biochar application were estimated by statistical meta-analysis of crop yield data from published biochar field trials to find the increase in cereal grain yield attributable to biochar application for both NWE (+0.07 to +0.28 t ha(-1)yr(-1)) and SSA (+0.18 to +1.00 t ha(-1)yr(-1)). The grain yield improvement from a one-time biochar application was assumed to persist without decay for an independently varying time period, and the increase in grain production then monetised using projected future commodity prices. The Net Present Value (NPV) of applying biochar was then calculated by setting present total costs against present total benefits as a function of biochar performance longevity. Biochar application was found to carry a positive NPV for cereal cropping in SSA in several scenarios where the duration of the biochar yield effect was assumed to extend 30 years into the future. Conversely, NWE biochar scenarios were all found to have negative NPVs even when the benefits time span was indefinitely stretched
    corecore